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Recent work on discrete classical problems in one-dimensional statistical

mechanics has shown that, given certain elementary symmetries, such problems

may not have a periodic (crystalline) ground state, even in the absence of ®ne

tuning of the couplings. Here these results are applied to several families of well

known polytypic materials. The families studied are those represented by the

compounds SiC, CdI2 and GaSe, and also the micas and kaolins. For all families

but SiC, it is found that there is a ®nite probability for the ground state to be

degenerate and disordered.

1. Introduction

The crystal is by far the most common state of bulk matter at

low temperature. The `crystal problem' is then the problem of

understanding, or even proving, why this is so. The crystal

problem remains largely unsolved; see MieÎkisz & Radin

(1987) for some recent discussions. In this paper, we consider

the crystal problem as applied speci®cally to polytypes and

polytypism. In polytypic materials (Verma & Krishna, 1966;

O'Keeffe & Navrotsky, 1981; Pandey & Krishna, 1982;

Sebastian & Krishna, 1994), one ®nds a three-dimensional

structure built up from identical two-dimensional layers; here

we call such layers `modular layers' or MLs. Various stacking

sequences of these MLs then give a bulk three-dimensional

solid. The `poly' aspect comes in because, although there are in

general constraints on how the MLs may be stacked one upon

another, these constraints do not uniquely determine the

stacking sequence giving rise to the three-dimensional struc-

ture. Instead they allow a variety of sequences and hence

many structures.

One can phrase this discussion in terms of energy scales.

The unique structure assigned to the ML comes from chemical

bonding with a large energy scale. The stacking constraints

then arise from another large energy scale: inter-

(modular)layer bonding may be weaker than intralayer bonds,

but the extensive nature of the interlayer interface makes very

large energy penalties for any relative stacking orientations

outside a discrete set. Finally, there are residual small energy

terms that can distinguish among the various stacking

sequences allowed by the constraints. These terms are small

because the nature of the ML, plus the stacking constraints,

typically ensure that the coordination of all constituent atoms

is independent of stacking sequence at the level of ®rst, second

or even higher neighbors.

Given this discrepancy of energy scales, it is then reason-

able, at low T, to assume that the large-energy degrees of

freedom (MLs and stacking orientations) are restricted to

their lowest-energy con®gurations ± perfect MLs, and

perfectly obeyed stacking constraints. Hence one can view

polytypism as a limited version of the crystal problem: one

assumes crystallinity in two dimensions (the ML), and then

asks: is there necessarily crystalline order in the third

dimension, i.e. in the stacking sequence?

Here the crystal problem is formally one-dimensional. The

discrete set of stacking orientations may then be thought of as

`spins' lying on a one-dimensional chain. Furthermore, given

the large mass of the ML, it is appropriate to view these spins

as classical. The stacking energetics is then expressed (Cheng

et al., 1987; 1988; Heine, 1987; Pandey, 1989) by a one-

dimensional classical spin Hamiltonian H1D, with the spins �i

taking one of a set of k possible values. Another integer

parameter r gives the range of the effective spin±spin (i.e.

interlayer) interaction. This effective interaction is of course

determined by the energetics of interacting quantum-

mechanical electrons in the potential of the constituent ions.

However, for insulating polytypes, for which the Fermi energy

lies in a gap, the range of interlayer interactions is ®nite

(Cheng et al., 1988), and so it is appropriate to consider r ®nite.

[For metals (Blandin et al., 1966; Krause & Morris, 1974), r is

effectively in®nite.]

Given a ®nite k and r, there are in fact only a ®nite set of

independent couplings that can be used to de®ne H1D. A

typical term in H1D is of the form

Jp0p1...pr

P
i

�p0
i �

p1
i�1 . . . �pr

i�r: �1�

There is one such term (and so one coupling J) in H1D for each

choice of the exponents f plg (with 1 � p0 � kÿ 1; and

0 � pl � kÿ 1, l> 0) (Canright & Watson, 1996). The total

number of independent couplings, which is thus the dimension

of the coupling-parameter space unconstrained by symmetry,



is d � �kÿ 1�kr. We shall not in general have much to say

about the couplings in H1D, which we loosely refer to as J's ±

beyond the facts that they are ®nite in number and may be

constrained (some of them) by symmetry. The crystal problem

for Hamiltonians of this form ± again, appropriate to insu-

lating polytypes ± has been studied by Radin & Schulman

(1983), by Teubner (1990) for k � 2, and by Canright &

Watson (1996) (CW). Radin & Schulman showed that the

ground state (GS) for H1D is in general periodic ± as did

Teubner for k � 2. These results appear to leave the crystal

problem solved for polytypism. However, CW pointed out

that the words `in general', for the previous results, mean

barring ®ne tuning of the coupling parameters J in H1D. That is,

if one chooses couplings freely from the d-dimensional space

spanned by the J's of H1D, one ®nds couplings giving a periodic

and nondegenerate GS with probability one. CW then pointed

out that nature does not choose freely from this d-dimensional

space ± instead, because of the presence of symmetry, at least

some of the J's are ®ne tuned. In other words, when H1D

respects certain elementary physical symmetries, the couplings

are constrained to a space of dimension ds < d. CW then

showed that, in this reduced (symmetric) space of couplings,

there is a ®nite fraction of the space giving degenerate and

disordered GSs for many values of k and r and certain

elementary symmetries.

We emphasize that these disordered ground states are

equilibrium structures. They are thus conceptually distinct

from the nonequilibrium disorder studied by Kabra & Pandey

(1988) and by Shrestha & Pandey (1996, 1997) ± although, in

some cases, the nature of the disorder is qualitatively similar

(Yi & Canright, 1996). They also require no ®ne tuning of the

couplings in H1D ± in contrast to the degeneracy and disorder

found in models such as the ANNNI model (Yeomans, 1987)

at lines or points in a higher-dimensional space of couplings.

The methods of CW instead predict degeneracy and disorder,

in equilibrium at zero temperature, over a ®nite subvolume of

the coupling-parameter space.

This ®nite fraction is however never 100%. Hence the

results of CW give two possible answers to the question `Is the

GS of a given polytypic material crystalline?', namely, possibly

not or necessarily yes. In this paper, we abbreviate these

possibilities as, respectively, PNC (possibly noncrystalline) or

C (crystalline). Here we should be quite clear what we mean

by possible or impossible: we consider any ®ne tuning of the

J's, other than that enforced by symmetry, to be `impossible' ±

i.e. in®nitely unlikely. We also consider defects in the MLs or

violation of the stacking rules to be impossible, since we

neglect them. However, our approach (and that of CW) does

allow for relaxation of the MLs from their ideal structure, as

long as that relaxation does not alter the symmetry of the MLs

and hence of the problem. (For an example, see x7 on micas.)

This restriction is necessary since our approach relies heavily

on symmetry.

In this paper, we ask the above question (is the GS crys-

talline?) for a variety of known polytypic materials, or rather

families of materials, characterized by the symmetry of the

MLs, by the nature of the `spins' and by the stacking rules.

Since we reason purely from the symmetries and constraints,

we can only give the answers C or PNC. In the PNC case, one

must look to the actual energetics of the interlayer couplings

(the J's) in order to obtain a de®nite answer. These couplings

can be obtained in principle and sometimes in practice (Cheng

et al., 1987, 1988; Heine, 1987; Shaw & Heine, 1990; Engel &

Needs, 1990; Engel, 1990); but we shall not address that

problem here.

Our method is as follows. Given the symmetry of the MLs,

the de®nition of the spins and the nature of the stacking

constraints, we can obtain, by basic geometric and symmetry

considerations detailed below, the elementary symmetries that

must apply to the couplings J of the layer Hamiltonian H1D.

These symmetries will form a group G. Knowing this group,

plus the number of states k per spin and the range r of

interlayer interactions, we can determine whether the ground

state of the resulting problem is C or PNC, using the methods

of CW. However, the range r of interlayer interactions ± like

the couplings themselves ± is not known for most polytypic

materials. Hence we reason as follows. The results of CW, as

well as our own experience, imply that, if a material is PNC for

some rmin, then it is also PNC for all r> rmin. Hence our answer

takes one of two forms: PNC for r> rmin (and we determine

rmin), or C for all r. For cases already studied by CW, we get

this answer from Table 1 of CW. However, we have found a

rich variety of new possibilities for real polytypes, beyond

those studied by CW. In particular, we ®nd that the spins can

take on a vector character for some polytypes. That is, per ML,

one needs an ordered D-tuple of scalars to specify the

stacking, with (possibly) D> 1. Hence, our one-dimensional

formalism must include the possibility of D (the spin dimen-

sion) > 1. Furthermore, given D> 1, we ®nd that interesting

symmetries are possible for H1D that were not considered by

CW. Hence, for these cases, we must determine the GS

structure of H1D (C or PNC as a function of k, r and

symmetries) `from scratch'.

The plan of the rest of the paper is as follows. In x2, we give

the logic that enables us to obtain the symmetry group G of

H1D for real polytypic materials. Then in x3 we present a brief

review of the graph-based analysis of CW, as well as a preview

of its extension to D> 1. In xx4±8, we then present our results

for ®ve polytype families, represented by SiC, CdI2, GaSe,

micas and kaolins/cronstedtites. Finally, in x9, we summarize

our results and discuss their implications.

2. Symmetry group of H1D

We wish to study the ground states of a one-dimensional

Hamiltonian H1D which represents a family of polytypes. This

Hamiltonian is one-dimensional because we make the usual

assumptions for polytypes: that the modular layers (MLs) are

invariant and have no defects, and that they stack upon one

another in relative positions/orientations chosen from a

discrete set. H1D then gives the energetics (which can, in

principle, be exact) for the possible stacking sequences

(chosen from this set). We call the discrete degrees of freedom

of H1D `spins'. In our approach, it is useful to distinguish
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`absolute' from `relative' spins. The former are absolute in the

sense that their position and orientation is ®xed [modulo

operations in the layer group (LG)] with respect to a ®xed

coordinate system. We ®nd it helpful to think of this ®xed

coordinate system as a ML at z � ÿ1; we call this the

`reference' modular layer or RML. The RML then de®nes the

absolute position and orientation, i.e. the `absolute spin', of

any other ML, as well as the stacking (ẑ) axis. `Relative' spins

are then spins that are de®ned by comparing absolute spins.

We write H1D in terms of relative spins for the same reason

that the microscopic Hamiltonian is in terms of relative

positions ± that is, we assume that no external ®elds bias the

absolute position of the MLs.

Given the discreteness of these relative spins and the

(assumed) ®nite range of effective interlayer interactions,

there are in general a ®nite number (Radin & Schulman, 1983;

Teubner, 1990) of possible ground states for H1D, and hence

for the polytype family. However, Canright & Watson (1996)

showed that symmetries of H1D can alter this conclusion, such

that there are, in some ®nite-volume regions of coupling space,

an exponential (in layer number N) number of ground states,

essentially all of which are disordered. Our goal in the present

work is to use the symmetries and stacking rules of a given

polytype family to determine whether the ground states of the

resulting H1D include this kind of disorder and degeneracy. In

this section, we outline the logic that allows us to determine

the symmetry group G of H1D. In the following section, we

discuss how to determine whether or not there are such

degenerate and disordered ground states for H1D, given its

symmetry group G.

What are the symmetries of H1D? Clearly, they derive from

the symmetries of the microscopic interactions giving rise to

the condensed solid. In particular, we know that the micro-

scopic energetics H3D must be invariant under any proper or

improper rotation R in O(3). Our goal is then to ®nd a set of

rotations fR�g � O�3� that tell us the symmetries of H1D. This

works as follows: we take a ®nite sample of MLs, stacked

according to the rules of the polytype family, and assign to it a

sequence Sr of relative spins �i (where i is a layer index). Then

a `useful' rotation R�, when applied to this three-dimensional

sample, will give us another sample that (i) is oriented such

that we can also assign a spin sequence S0r to it, using the same

conventions as those used for Sr; and (ii) has S0r 6� Sr .

`Useless' rotations (much more numerous) will fail (i) or

(ii). For instance, noncrystallographic rotations fail (i): if we

rotate a sample by an arbitrary amount about an arbitrary axis,

its energy doesn't change, but we cannot assign a spin

sequence to the result because (in general) we have lost

orientation with respect to the (®xed) RML. That is, the RML

provides us with a reference frame that must be used to

evaluate any new stacking sequence as spins. Without the

RML, the exercise is empty.

Other rotations will satisfy (i) but simply give the identity.

This group may include elements of the LG but not necess-

arily; the LG leaves the MLs invariant but may alter the spins.

In any case, rotations giving the identity in spin space are also

clearly not useful; hence criterion (ii).

In order to satisfy (i), we con®ne ourselves to those crys-

tallographic rotations appropriate to layers. [This is a necess-

ary but not suf®cient condition for satisfying (i).] In fact ±

since the group structure of rotations carries over into the

group structure of symmetry operations on spins ± we need

only consider a suf®cient set of generators for the layer groups,

in order to ®nd a suf®cient set of generators for the group G of

H1D. We take these layer-group generators from a table in

Goodman (1984). This is a short list, from which one quickly

®nds those R� that fail neither (i) nor (ii) and so give us the

symmetry group G for the polytype. Speci®cally, a (suf®ciently

general) `seed' sequence Sa of absolute spins is chosen, and its

corresponding relative-spin sequence Sr determined. Then a

useful rotation R� gives a new con®guration that also may be

written as a list of well de®ned absolute spins, using the same

reference coordinates (i.e. the RML) as the original sample.

This new list S0a then gives a new relative list S0r. The operation

relating Sr to S0r is then a symmetry of H1D ± because the

sequences Sr and S0r (representing stacking sequences

differing only by a rigid rotation) must be degenerate.

In order to illustrate our methods and logic, we consider a

simple example: close-packed layers of identical spheres. This

example in fact is not wholly academic, as it may be used to

describe some elemental metals; however, metals (Blandin et

al., 1966; Krause & Morris, 1974) do not conform to our

assumption of ®nite r. Hence we use this example primarily for

illustrative purposes.

First we de®ne the MLs. These are two-dimensional close-

packed layers with the full symmetry of the hexagonal net: the

LG [here we use notation following Vainshtein (1981)] is

p6=mmm. Next we de®ne the `absolute spins'. We recall that

these are de®ned with respect to a ®xed reference modular

layer or RML. For the current (close-packing) example, we

take the RML to be (say) an A layer. Then the absolute spin of

any other ML is an A, B or C. We can de®ne the relative spins

using the usual HaÈgg notation: �i � �1. This de®nition

incorporates the only stacking constraint, namely, that the

occurrence of adjacent like absolute spins (AA, BB or CC) is

forbidden. We follow the standard convention that � repre-

sents A) B, B) C or C) A (cyclic sequences), while ÿ
labels the anticyclic pairs.

For the purposes of our analysis, it is important to make

explicit what is implicit in the above, and in fact in all cases: the

de®nition of relative spins includes or implies a convention for

a positive stacking vector�ẑ. This positive stacking vector may

be thought of as attached to the RML. The point here is that

relative spins always refer to the change in absolute spin upon

moving in the �ẑ direction. Our logic then requires that this

convention (i.e. the sign of ẑ) not change under rotations

(proper or improper) which change z!ÿz.

Having de®ned the MLs and their symmetry, relative and

absolute spins, and stacking constraints, we are ready to ®nd

the symmetry group G of H1D. We introduce a `seed' sequence

to determine the effects of physical rotations on a sample. The

only constraint on the choice of seed is that it should be

general enough to distinguish all the possible symmetries of

H1D. For the close-packing problem, let this seed sequence be



Sa � �ABCBACBC�. We can write this in terms of relative

spins as Sr � �� � ÿÿÿÿ��. Let us consider three rota-

tions acting on S. For the ®rst, let us rotate the sample by 60�

about an axis parallel to the stacking direction ± this operation

being more brie¯y denoted `6z' ± centering the axis on a site in

an A layer. This will leave the A spins unaffected but exchange

B and C. The rotated absolute spin sequence is then

(ACBCABCB), giving a relative rotated spin sequence of

�ÿ ÿ � ���ÿ�. If the identi®cation of �;ÿ as spin inverse

pairs is made, then the rotated relative spin sequence is the

spin inverse of the original relative spin sequence. We then say

that spin inversion (S) is a symmetry of the Hamiltonian

describing this system.

For the second rotation, consider rotating the sample by

180� about a primitive translation vector (along x, y or u) of

the hexagonal net. (We denote this operation as 2xyu.) Let the

origin of this axis again be centered on an A site. Then A sites

will be brought back to A sites, while B and C sites exchange;

and ®nally the entire stacking order of the spins is reversed. So

the rotated absolute spins will now be (BCBACBCA). This

will give a relative spin sequence of �� ÿ ÿ ÿÿ���.
Comparison with the original relative spin sequence shows

that this has just altered the order of the spins. We therefore

say that the Hamiltonian has spatial inversion (I) symmetry.

Finally, consider the improper rotation mz � �z!ÿz�.
This rotation will leave the absolute spins unchanged but

reverse their stacking order. So the rotated absolute spin

sequence will be (CBCABCBA). This gives a relative spin

sequence of �ÿ � ���ÿÿ�. This is just the product of spin

and spatial inversion SI operating on the original sequence.

Hence our third rotation is redundant: it gives us an element

SI of the symmetry group G, which we already knew we had

from the two elements S and I. All other rotations on our list

are also redundant. In fact, for D � 1 (which is the case here),

we have never found a larger group than that generated by S

and I. We denote this group by G � S� I; this is the symmetry

group of H1D for any polytype formed of close-packed layers

of spheres.

3. Disordered ground states, graphs and D pairs

In this section, we ®rst brie¯y review concepts and termin-

ology from previous work (Canright & Watson, 1996), which

we will use in the present work. We then extend these ideas

to D-dimensional spins ± this extension being necessary for

several of the polytype families we consider.

The essential idea is to represent the Hamiltonian H1D as a

directed graph Gk
r . Simple cycles (non-self-intersecting closed

paths) in this graph then represent the possible ground states

for the given Hamiltonian. For ®nite k and r, there is a ®nite

number of such simple cycles (SCs); as one varies the ®nite

number of J's in H1D, one selects in general one of these SCs as

the ground state. CW also de®ned a symmetry-reduced graph
X Gk

r , where X represents some symmetry of H1D. The point of
X Gk

r is simply that, if H1D is constrained by a symmetry X,

then, as one varies the J's within this constrained subspace, the

ground state is one of the SCs of X Gk
r . However, it can happen

that, for some k, r and X , a SC of XGk
r represents a pair of

(symmetry-related) SCs of Gk
r , with zero surface tension

between the two ground states. This pair in Gk
r is called a `D

pair': when the J's are such that the D pair has lowest energy,

then there are an uncountable number of degenerate and

disordered ground states for the problem. There are a number

of technicalities involved in the construction of X Gk
r and the

identi®cation of its SCs (particularly those that represent D

pairs); we refer the reader to Canright & Watson (1996) for

details. Here we simply emphasize that, in studying a given

polytype family, a search for disordered ground states

becomes a search for D pairs; and, when the graph Gk
r for a

given polytype has D pairs, we answer the question of crys-

tallinity with PNC: possibly noncrystalline ground state.

All these ideas extend naturally to vector spins, i.e. to D> 1.

However, for D> 1, new symmetries are possible besides S

and I (see e.g. GaSe). Also, even for the symmetries consid-

ered by CW, the graphs (and hence simple cycles) for D> 1

are different from those for D � 1. (We give a speci®c

example in x5, see Fig. 1.) Hence the question of existence, or

not, of D pairs needs to be re-examined for higher D. To

indicate which graph we mean, we use the notation X
DGfkgr .

(Here the set fkg includes, in principle, one k value for each

spin component; see the kaolins, below.) Thus, regardless of

the symmetry group G for a polytype, the CW analysis must be
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Figure 1
The graphs (a) G2

2 and (b) 2G2
2. The latter graph has twice as many nodes

and arcs; it also includes many simple cycles not found in G2
2.
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redone for any polytype with D> 1. That is, the new graphs

must be examined, either schematically, or in speci®c detail, in

order to determine at which r values (if any) D pairs exist.

For D � 1, k � 2 and Hamiltonians respecting both S and I

symmetry, Canright & Watson (1996) found that the effective

interlayer interaction must extend through at least six modular

layers for there to be a chance of a disordered ground state ±

i.e. for there to be D pairs. For effective interlayer interactions

of shorter range than this, the ground state is guaranteed to be

periodic. In our present shorthand, these conclusions may be

stated as: PNC for r � 6 for the sphere-packing problem. We

remind the reader that we know of no ®nite-range polytype

that may be modeled as the close packing of spheres.

However, the close-packing problem serves as a useful illus-

tration of our logic. It also introduces notation and language

that will be useful in our analysis of several polytype families

(SiC, CdI2, GaSe), for which the MLs are composed of close-

packed sublayers. Let us now discuss these families in turn.

4. SiC

SiC is one of the more well known and well studied of the

polytypic materials. It shows a rich variety of polytypic

structures (Verma & Krishna, 1966; Sebastian & Krishna,

1994) with the simplest being a repeated sequence of two

modular layers and the more complex periodic structures

consisting of as many as 900 Si±C layers in a unit cell. Weakly

or even highly disordered structures are also found. SiC

polytypes may be viewed as alternate two-dimensional layers

of close-packed Si and C atoms. Adjacent layers (of unlike

atoms) then obey the constraint that all atoms in the structure

have tetrahedral coordination. An SiC modular layer can be

taken to be two of these sublayers, one of Si and the other of

C. Absolute and relative spins can be de®ned analogously to

the close-packing problem. The absolute spins can be labeled

A�;B�;C�, with � � Si or C designating the sublayer. A

convenient convention (Shaw & Heine, 1990) then takes a C

sublayer as the `lower' sublayer of a ML and requires the

subsequent Si sublayer to have an absolute spin distinct from

the C sublayer. This is of course a binary choice; the relative

spin representing this choice can be given (again) a � or ÿ
symbol. Since these two sublayers form a ML, and their

(absolute) positions suf®ce to de®ne the relative spin without

reference to any other ML, we say that the relative spin is an

`intralayer' spin. The tetrahedral constraint then forces the

next C sublayer (of the next ML) to sit directly above the

previous Si sublayer ± hence there is no interlayer choice (i.e.

no interlayer relative spin). The resulting MLs have the layer

group (LG) p3m1. Since we have a single scalar relative spin

per ML, we have D � 1; and clearly k � 2.

We scan Goodman's (1984) list of crystallographic

symmetry operations. We recall that `useless' operations give

either the identity or a resulting con®guration for which the

spins are not well de®ned, while the `useful' ones give a well

de®ned relative spin sequence that is distinct from the starting

or seed sequence. We ®rst note that any operation taking

z!ÿz is useless. One can see this from our convention, since

z!ÿz has as a result a ML with an Si sublayer on the

`bottom'. We stress however that this result is convention-

independent: there is no convention, consistent with the

structure, that has well de®ned relative spins after taking

z!ÿz, for ®xed stacking vector �ẑ. The reason for this is

simply the distinct identities of the two sublayers (Shaw &

Heine, 1990): whatever the convention, z!ÿz will give

con®gurations that conform to that convention only if one in

addition exchanges Si and C atoms ± an operation that cannot

be a symmetry of the microscopic Hamiltonian H3D.

We consider the remaining operations R on our list. Rota-

tions by 90� about z (4z) are also useless: they give con®g-

urations that cannot be referred to our reference modular

layer (RML), since they do not take the hexagonal net of a

ML back to itself, and hence have no well de®ned absolute

spin. Rotations by 120� about z (3) act as an identity on all

absolute spins and stacking sequences, and so are not useful.

Re¯ections (here designated m) about a plane whose normal

lies along a primitive translation vector (2 x; y; u) are also in

the LG and so give identity for the absolute spins, as well as for

their stacking order. We are left with two symmetry elements

that are not members of the LG, namely sixfold rotations

about ẑ, and mirror re¯ections m0 about planes parallel to both

z and to primitive translation vectors of the ML. Choosing a

seed sequence and performing these operations on it, we ®nd

that each is useful: each gives the spin inversion S (i.e.

� () ÿ) operation for the relative spins.

We have also considered glides, which are included in

Goodman's list. We have not found glides to be helpful in the

case of SiC, or indeed in any case we have considered. While

we know of no proof that glides could not give an independent

symmetry for H1D, we ®nd that the translational component

never affects the relative spins that we have studied so far ±

while the re¯ection is of course taken care of by considering it

alone. Thus, glides can be `useful' by the technical de®nition of

useful employed here; but we do not ®nd that the translational

component adds any new information beyond that obtained

from re¯ection alone. Hence we do not consider glides further

in this paper.

There is also a screw operation on our list. It was excluded

in the present case (SiC) as it takes z!ÿz. However, we note

here that screws have also not been found helpful for any of

the families we have studied, for the same reason that we have

not found glides helpful.

We thus exhaust our list of candidate geometric operations.

We have found two useful R� operations, each giving S

symmetry for the spins. We do not obtain spatial inversion (I)

symmetry. Hence, S is the only good symmetry of the layer

Hamiltonian H1D, and so the only generator of the symmetry

group G.

Now we are in a position to ask: might SiC have a

noncrystalline ground state? Since D � 1, we can use the

results of CW. For k � 2, they found that only I symmetry or

S� I symmetry can lead to disordered ground states. S alone

does not give the D pairs that give rise to disordered ground

states. Hence, we conclude that SiC must be crystalline in the



ground state: in the language used earlier, we say that SiC is C

(crystalline) for all r.

One can also obtain this result by explicitly computing the

couplings J in H1D. However, our result is obtained purely

from symmetry considerations and so is independent of the

speci®c values of these couplings. This result also applies to

any other polytype in the same family as SiC ± i.e. any other

polytype with the same structural and bonding constraints,

which give rise to symmetry-equivalent MLs and analogous

stacking constraints and spins. To our knowledge, the J's have

been computed only for SiC (Cheng et al., 1988; Shaw &

Heine, 1990) and for ZnS (Engel & Needs, 1990; Engel, 1990).

Here we ®nd that any polytype isostructural to SiC must have

a periodic ground state.

5. CdI2

5.1. Modular layers, vector spins and symmetry group

Another well known group of polytypic materials is CdI2

and related compounds isostructural to it, such as CdBr2 and

PbI2. While we will discuss CdI2 speci®cally, our conclusions

and analysis will apply to any polytypic compound in the same

family. As with SiC, CdI2 shows a wide variety of polytypic

structures: periodic structures with unit cells containing as few

as two modular layers up to as many as 120 modular layers;

and disordered structures (Verma & Krishna, 1966; Sebastian

& Krishna, 1994). CdI2 can be viewed as a close-packed

structure of I ions with Cd ions ®lling octahedral voids. This is

possible because of the disparity of the ionic radii of the

constituent ions ± 2.16 AÊ for I and only 0.97 AÊ for Cd. Since

there are twice as many I ions as Cd ions in the structure, only

half of the octahedral voids ± those between alternating pairs

of I sublayers ± are ®lled. A modular layer can be thought of as

two close-packed I-ion sublayers, with Cd ions ®lling the

octahedral voids between the I sublayers. Hence a ML is a

`sandwich' of three close-packed layers: I/Cd/I. The bonding in

the modular layer (intralayer bonding) is ionic, while the

bonding between layers (interlayer bonding) is primarily due

to much weaker van der Waals forces. It is thus natural to

de®ne a ML as an I/Cd/I sandwich. The LG for such a sand-

wich is p�3m1.

Just as in the case of the close-packing problem, the abso-

lute spins of the I-ion sublayers may be represented by A, B

and C. The stacking constraints for close packing of spheres ±

namely, that adjacent layers must have different absolute spins

± apply also to adjacent sublayers in CdI2; there is however the

further constraint that succeeding I sublayers, whether or not

they have an intervening Cd sublayer, must have differing

absolute spins. Hence the stacking constraints on the I

sublayers is the same as if there were no Cd sublayers; and

since the latter, in each ML, must take whatever absolute spin

is not taken by the two I sublayers of that ML, the Cd

sublayers have no stacking degree of freedom. Furthermore,

the Cd sublayers lie on the same two-dimensional net as do the

I sublayers, and hence neither add to nor subtract from the

symmetry of the problem. Thus we ignore the Cd sublayers in

our analysis. Their presence is re¯ected in our formalism in the

fact that, unlike for the close-packing problem, for CdI2 we

take two I sublayers to make up a ML.

Clearly there is a binary relative spin implied by the

speci®cation of each ML (e.g an AB ML becomes �). This is

an intralayer spin. In order to describe the stacking of many

MLs, we need (per ML) this intralayer spin, plus an interlayer

spin (per ML). The latter gives the relative orientation of the

`bottom' I sublayer of a `new' ML (i� 1) with respect to the

`top' I sublayer of the previous ML (i). We thus ®nd two binary

choices per ML. We could then say that k � 4 for CdI2.

However, the four states are ��, �ÿ, ÿ� and ÿÿ. That is,

the relative spin for a ML is a vector: an ordered pair of scalars.

The order is important because the chemistry, and hence

energetics, differ between inter- and intralayer spins. The

formalism must distinguish the two. Furthermore, if we take

the above four pairs to be our k � 4 spin states but attempt to

treat them as scalars (so as to take advantage of the results of

CW), we ®nd that the attempt fails. The spatial inversion

operator I, applied to these spins treated as scalars, has a

result that is highly unphysical. The I operation reverses the

(stacking) order of scalar spins but fails to reverse the order

within any `scalar' ordered pair. A physical rotation taking

z!ÿz must of course reverse both the stacking order and

the internal order of the spins. Hence, CdI2 compels us to

consider vector spins. For CdI2, the dimension of the vector

spins is D � 2. We also know that the k value for each

component of the vector is two. We have not found D> 2 for

any of the polytype families we have studied. However, we

have found a case (kaolins) where the different components

have different k values.

At this point, it is worthwhile specifying the form of H1D for

vector spins, with D � 2. Recall the form of terms in H1D for

D � 1, as given in (1). In lieu of the �i used for the scalar case,

we denote the intra- and interlayer spins of ML i by xi and yi,

respectively. A spin sequence for a given sample is then of the

form

. . . xiÿ1 yiÿ1 xi yi xi�1 yi�1 . . . : �2�

Now we wish to build terms like those in (1), using both spin

components with interactions out to some given range r. For

D> 1, we shall de®ne r to be the interaction range in units of

spin components (half-spins). The form of terms in H1D, for

D � 2, then depends on whether r is even or odd. For even r,

we obtain terms of the form

Jp0q0p1q1...pr=2qr=2

P
i

x
p0

i y
q0

i x
p1

i�1y
q1

i�1 . . . x
pr=2

i�r=2y
qr=2

i�r=2: �3�

The exponents obey 0 � pl � kx ÿ 1 and 0 � ql � ky ÿ 1,

where kx and ky are the number of states for, respectively, x

and y spins. There are further constraints on the exponents. If

p0 � 0, then we must have q0 6� 0; otherwise we get redundant

terms in the
P

i. Also, to keep only terms of range r, we must

have qr=2 � 0 whenever p0 6� 0. Given these constraints, and

setting kx � ky � k and D � 2, the total number of distinct J's

is dD�2 � 2�kÿ 1�kr. For odd r, terms are of the form
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Jp0q0p1q1 ...q�rÿ1�=2p�r�1�=2

P
i

x
p0

i y
q0

i x
p1

i�1y
q1

i�1 . . . y
q�rÿ1�=2

i��rÿ1�=2x
p�r�1�=2

i��r�1�=2; �4�

with the same range for the exponents, and the constraints

p0 � 0�) q0 6� 0 and p0 6� 0�) p�r�1�=2 � 0. For

kx � ky � k and D � 2, we get the same number of such

terms, namely dD�2 � 2�kÿ 1�kr. Hence for CdI2, with

kx � ky � 2, there are 2r�1 independent J's in H1D ± twice the

number one obtains for the same r and k with D � 1.

We can de®ne R to be the range of interaction in units of

modular layers. However, it is not possible to ®x the half-spin

interaction range at r (as speci®ed above) and, at the same

time, to require that MLs have all interactions out to a ®nite

range R and then zero interaction beyond R. This is simply

because the interactions coupling x and y spins act on half-

layers rather than on entire MLs. We feel that ®xing r is

neither less nor more realistic than ®xing R for the MLs ±

especially since, in this work, we are asking for a minimum

range of interaction, beyond which one has the possibility of D

pairs, i.e. disordered ground states. Given our conventions,

interactions in units of spin components (half-spins) reach

their limit (at r) in such a way that the range R in units of MLs

is half-integer. However, one can simply assume that R is

roughly the higher integer value; this gives R � ��r� 1�=2�,
where here `�. . .�' means `the integer value of . . .'. Thus, r is

roughly twice the range of the interaction in terms of MLs. It is

r that determines the nature of the graphs representing H1D,

through terms of the form (3) or (4). Finally, for D> 1, we can

de®ne K to be the number of states per ML for a polytype.

Unless there are extra stacking constraints beyond those

embodied in the de®nition of the spins themselves, we will

have K � kxky. Such `extra' stacking rules do exist for the

kaolins and cronstedtites, which then have K< kxky.

We now have conventions and notation in place for vector

spins with D � 2. We know that we will have to redo the

graph-based analysis of CW for any problem with D> 1,

including CdI2. Let us however work in logical order and begin

with ®nding the symmetry group of H1D for CdI2. Having

de®ned absolute and relative spins, along with the stacking

constraints, we are ready to do so. We consider crystal-

lographic operations from Goodman's list acting on a seed

sequence. Since each ML has some degree of symmetry about

the Cd sublayer, we expect that operations that take z!ÿz

will give well de®ned spins. So we have a more extensive list

of operations to consider than we had for SiC. Here we

summarize our results. We ®nd that useful operations include

the following: 6z (sixfold rotation about ẑ) and m0 (re¯ection

about planes containing ẑ and primitive translation vectors)

each yield S symmetry for H1D. Re¯ection (mz) in a plane

perpendicular to the stacking direction has the effect of

inverting the stacking order and reversing all the relative spins

(as we found in x2 for close packing). So mz results in SI

symmetry. Hence we have that S and SI ± or, equivalently, S

and I ± are generators of G. As a check, we note that

�6z�3 �mz � �1 and hence �1 gives S3 � SI � I symmetry for H1D

(which is also easily veri®ed directly). We ®nd no crystal-

lographic operations yielding any other independent

symmetry so, as in the case of the close-packing problem, we

®nd the symmetry group to be G � S� I. We now ask about

the possibility of disordered ground states. Can CdI2 have a

noncrystalline ground state? To answer this, we must deter-

mine whether these symmetries can induce D pairs in the

symmetry-reduced graphs S�I
2Gf2;2gr , for each r. More precisely,

we seek the smallest r (rmin) for which D pairs occur, and then

assume they also occur for r> rmin (x3). In order to ®nd rmin,

we must repeat the CW D � 1 study for the case D � 2, with

the symmetry group G � �S� I�. In order to perform this task,

we ®rst need some general results and analysis for the case

D � 2. These results will be given in the next subsection, after

which we give our conclusions for the case of CdI2 in x5.3.

5.2. Graphs and D pairs for the case D = 2

5.2.1. General. We address here the construction of the CW

graphs extended to the case of D � 2. We begin by noting that

in going from D � 1 to D � 2 we double the number of nodes

and arcs. This re¯ects the fact that one must now distinguish a

node (or arc) beginning with an intralayer (x) spin from one

beginning with an interlayer (y) spin. Each spin component

also in general has a k value associated with it. However, since

the k values are identical for each component for both CdI2

and GaSe, we denote their common value by a single k. (We

will be forced to abandon this convention for the kaolins, for

which the number of states differs for each component of

spin.) With these conventions, the graphs that we study may be

denoted X
2 Gk

r . Let us ®rst describe the construction of the 2Gk
r

graph. We draw two copies of each node in Gk
r , labeling one

copy (the `x node') such that the ®rst spin in the sequence

begins with an x spin, and the other copy (`y node') begins

with a y spin. We then draw the arcs connecting nodes; this is

the same as for D � 1, except that arcs only connect x nodes to

y nodes or vice versa. The result, for k � r � 2, is shown in

Fig. 1(b). We mention some general properties relating the

simple cycles (SCs) of the 2Gk
r graphs to the SCs of the Gk

r

graphs. (I) All of the odd period �po� SCs of Gk
r become SCs

of period 2po in 2Gk
r . An example of this is the SC �001� in

Fig. 1(a). As D � 1 goes to D � 2, this SC expands to

�0x0y1x0y0x1y� (Fig. 1b). (II) All of the even-period � pe� SCs of

Gk
r break up into two disjoint SCs of period pe in 2Gk

r . An

example of this is the SC (01) in Fig. 1(a), which breaks up into

the two SCs �0x1y� and �1x0y� of Fig. 1(b). (III) Additionally,

we ®nd new SCs in 2Gk
r that have no analog in Gk

r . For

example, the SCs �0x0y0x1y� and �0x0y0x1y1x0y1x1y� in 2G2
2

cannot be simply related to any one SC in G2
2.

5.2.2. S symmetry. Next we give some general results

concerning S symmetry for the case D � 2. CW found that S

symmetry never gives rise to D pairs unless there are spin-

invariant nodes in the graph Gk
r . Furthermore, they found that

there are always D pairs when there do exist spin-invariant

nodes. That is, they found

�disordered ground states� () �spin invariant nodes�: �5�
We ®nd that the logic they employed makes no reference to

the dimension of the spins, and so holds equally well for the



case D � 2. Hence the result (5) also holds for D � 2 (and in

fact for any D).

CW found that there are always spin-invariant nodes for

odd k, but only considered the case of no spin-invariant nodes

for even k. We have found that even k can also have spin-

invariant nodes; however, we defer a discussion of this case

until it is needed, namely when we examine the case of micas.

5.2.3. I symmetry. We have no general results for I

symmetry and D � 2. We have however examined a number

of speci®c cases for k � 2 and 3. For k � 2, we ®nd a differ-

ence from the D � 1 case (which had rmin � 5): for D � 2, we

®nd no D pairs from I symmetry for r � 5. We have not

constructed the larger-r graphs. For k � 3 and D � 2, rmin � 2

± the same as for D � 1.

5.2.4. Isomorphism between S�X G2
r

S�X G2
r and X G2

rÿ1
X G2

rÿ1. CW found

that, for D � 1, S�X G2
r � X G2

rÿ1. Here X can be either the

identity or I; and the isomorphism � means both that the

nodes of the two graphs can be placed in one-to-one corre-

spondence and that the symmetries (apart from S itself) of the

corresponding nodes are the same. This isomorphism is useful

in the D � 1 case; and it would of course be useful if a similar

isomorphism were to hold for D � 2. However, we ®nd that

such an isomorphism fails for either X � I or X � identity.

The isomorphism in fact holds at the level of topology; but the

symmetry of the nodes in S�X
2 G2

r is not simply related to those

in X
2 G2

rÿ1. Hence we cannot make use of such an isomorphism

relation to learn about D pairs in S�X
2 G2

r for the case of CdI2.

5.3. D pairs for D = 2; CdI2

We have already noted above that some SCs in Gk
r imply the

existence of corresponding SCs (or pairs of SCs) in 2Gk
r . We

have also noted that there are `new' SCs in 2Gk
r that have no

corresponding SC in Gk
r . In this section, we ask the same

questions about D pairs: (i) do D pairs in X Gk
r imply the

existence of `surviving' D pairs in X
2 Gk

r ?; and (ii) are there

`new' D pairs in X
2 Gk

r ? Let us answer these questions in turn,

giving only our answers below. (The reasoning is simple,

involving only topological and symmetry considerations

applied to schematic D pairs, or else proof by example.) The

answers to (i) and (ii) will in fact be helpful in understanding

the case of CdI2.

(i) First we consider S symmetry. Here we ®nd that even-

period ( pe) D pairs in SGk
r (where the period is that of one of

the SCs of the D pair) imply the existence of a disjoint pair of

period pe D pairs in S
2Gk

r . On the other hand, for an odd-period

( po) D pair in SGk
r , we ®nd that there is a `D quadruple' in S

2Gk
r .

A D quadruple is indicated schematically in Fig. 2. It uses two

spin-invariant nodes of 2Gk
r and represents four degenerate

ground-state phases, each of period po, all with zero surface

tension between them ± hence disorder and extensive

degeneracy as with a D pair. This combination of topology and

symmetry also occurs for X � S� I and D � 1; see Yi &

Canright (1996, Fig. 1). We note also that a `type 4' D pair

(Canright & Watson, 1996) in IGk
r is in fact topologically a D

quadruple.

For I symmetry, the situation is more complicated. There

are two topological types (three subtypes) of D pair as listed in

Fig. 5 of Canright & Watson (1996): type 2 [which actually has

two subtypes, Figs. 5(b) and (e)] and type 4. The survival of a D

pair under D! 2 actually depends on which of the three

subtypes it is and whether the period is even or odd. We will

not list the results here since we will not need them for any of

our families studied. Instead, we proceed to the case

G � S� I, which is appropriate to CdI2.

For the case of S� I symmetry, there are several topo-

logical types of D pairs; see Yi & Canright (1996) for details.

We consider only those appearing at r � 6 [see Table I of Yi &

Canright (1996)]. That ®xes r to be even, with p odd for type II

[in the notation of Yi & Canright (1996)] D pairs, and p even

for type III. We ®nd that the former case gives a D quadruple

in S�I
2Gk

r . In the latter case, we ®nd, for p=2 odd, a disjoint pair

of D quadruples in S�I
2Gk

r ; and, for p=2 even, no surviving D

pairs. We will use these results to ®nd rmin for CdI2 below.

(ii) We know there are `new' SCs in X
2 Gk

r in general. Are

there `new' D pairs as well? We ®nd by example that such can

occur, for both S and I symmetry in general. For the case

G � �S� I�, we have only studied k � 2. For this case, we

have constructed S�I
2G2

r for 1 � r � 5, ®nding no D pairs (and

hence no new D pairs) in the graphs. Hence, for the case S�I
2G2

r

as well as for other cases examined (x5.2.2), we have failed

to ®nd `new' (D � 2) D pairs wherever there are no `old'

(D � 1) D pairs. We believe however that there are also new

D pairs in general for S� I symmetry.

Finally, with these results we are in a position to ®nd rmin for

CdI2. There are in fact odd-period type II D pairs, and even-

period type III D pairs with p=2 odd, in S�IG2
6 (Yi & Canright,

1996). These D pairs imply the existence of corresponding D

pairs in S�I
2G2

6. Furthermore, we know (by construction of the

graphs) that there are no D pairs in S�I
2G2

r for r< 6. Thus we

®nd that rmin � 6 for CdI2. That is, if the intersublayer inter-

actions are signi®cant beyond r � 6 (i.e. approximately 3

MLs), then one cannot rule out an in®nity of disordered
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ground states for CdI2 without further investigation of the

effective interlayer couplings: CdI2 is PNC for r � 6.

6. GaSe

GaSe is a layered compound having strong covalent bonding

within a modular layer, with the bonding between adjacent

modular layers being primarily due to van der Waals forces.

Periodic structures with periodicities as large as 21 MLs have

been reported (Sebastian & Krishna, 1994). A modular layer

consists of four sublayers, each composed of either Ga or Se in

a close-packed hexagonal net. The sublayers are stacked in the

sequence Se/Ga/Ga/Se. Each Ga atom is tetrahedrally coor-

dinated with three Se atoms in an adjacent Se sublayer, and

has a ®nal bond with the Ga atom in the layer adjacent to it. In

fact, the top two sublayers are just the re¯ection of the bottom

two sublayers about a plane perpendicular to the stacking

direction placed half way between the Ga sublayers. This can

be expressed in terms of the familar A, B, C notation as

L1=L2=L3=L4, with the two constraints that L1 and L4 (the

Se sublayers) occupy the same ABC positions, and that L2 and

L3 (the Ga sublayers) also occupy equivalent positions. For

the Ga and Se atoms to be tetrahedrally coordinated, they

must not occupy the same sites, so L1 and L2 differ. Addi-

tionally, adjacent Se sublayers must occupy different positions,

as in the close-packed problem.

We de®ne the relative and absolute spins analogously to the

close-packed problem. For L1, which must differ from the

upper Se sublayer of the previous ML on which it rests, there

are two choices for the relative spin. Likewise, L2 also has two

choices for relative spin. Having speci®ed L1 and L2, the

remainder of the ML is rigidly determined. So, just as for CdI2,

we ®nd that D � 2, with k � 2 for each spin; each ML is

described by a two-component vector spin. As in the case of

CdI2, we denote the intra- and interlayer spins of a ML i by xi

and yi. We ®nd the layer group for GaSe to be p�3m2.

The graphical analysis of CW is insuf®cient to determine the

possibility of disordered ground states since D> 1. Further-

more, even though D � 2 and k � 2 (for each spin) as for

CdI2, we ®nd that the graphical analysis performed there does

not carry over to GaSe. We will have to rework the graphical

analysis because of the presence of new unexpected symme-

tries. We ®nd these symmetries in the usual way, by choosing a

seed sequence and applying useful rotations to them. We

recall that the symmetries we have found so far include

inversion of the order of spins (I), inversion of the spins

themselves (S), or possibly the product SI of these two

operations. We will ®nd that GaSe has symmetry operations

similar to these; however, owing to the existence of vector

spins, we must consider that S can act selectively on only one

component of the spin. We emphasize that we did not antici-

pate this possibility, but were led to it by the same procedure

that led to ®nding S and I for other compounds. It is therefore

useful to consider a seed sequence and the effect of rotations

on this sequence in some detail.

We take our absolute seed sequence to be Sa � �AbbA�
(CbbC) (BccB) (CaaC) (AbbA) (BaaB) (AccA) (C . . . ),

where the parentheses are used for convenience to separate

MLs. Upper-case letters refer to Se sublayers and lower-case

letters to Ga sublayers. Taking the ®rst component of the spin

to be the intralayer component and denoting it by xi and the

second component to be the interlayer component denoted

by yi, we can write the relative spin sequence as

Sr � �� ÿ ÿÿ������ÿÿÿÿ�x. The subscript x �y�
reminds us that the sequence begins with an intralayer

(interlayer) spin. The ®rst rotation we consider is 6z centered

on an A site. As in the case of the close-packing problem,

this leaves the A sites unaffected while exchanging the

B and C sites. Our rotated absolute sequence is then

S0a � �AccA� (BccB) (CbbC) (BaaB) (AccA) (CaaC)

(AbbA) (B . . . ), giving a rotated relative sequence

S0r � �ÿ � ��ÿÿÿÿÿÿ�����x. If the usual identi-

®cation of�=ÿ is made as spin inverse pairs, S0r is just the spin

inverse of Sr. Hence spin inversion S is a good symmetry of

H1D for GaSe. The next rotation we consider is mz, which

simply reverses the stacking order of the absolute spins. This

results in a rotated absolute sequence given by ( . . . C)

(AccA) (BaaB) (AbbA) (CaaC) (BccB) (CbbC) (AbbA).

Writing this in terms of relative spins, we ®nd

S0r � �� ÿ �ÿÿ�ÿ�ÿ��ÿ���y. Comparison with

our original spin sequence shows that not only has the order of

the spins been reversed but each interlayer spin has been

inverted, while the spin value of the intralayer spins remains

unchanged. Since only the interlayer spin has been inverted,

we invent a new symbol to denote this operation, Sy. Similarly,

we de®ne Sx as acting on a spin sequence to invert only the

intralayer spins. The Hamiltonian thus must have, in addition

to S, the symmetry SyI. The inversion of only one component

of the spin may seem surprising, but it is easily understood.

Because of the mz symmetry of an individual ML, z-sensitive

properties of a single ML, such as the intralayer relative spin,

must be invariant under mz. The value of the intralayer rela-

tive spin is thus insensitive to the order in which the sequence

is read ± as illustrated by the above example. The interlayer

spin lacks this property.

We have found two symmetries (S and SyI) of the Hamil-

tonian H1D, and expect that these symmetries should form a

group. Clearly these two symmetries alone do not close and

form a group, so we must seek other symmetries. The product

SSyI � �SxSy�SyI � SxI of these symmetries should also be a

symmetry of the Hamiltonian. We then expect that some

rotation R will give this symmetry, and indeed we ®nd that

spatial inversion of the sample �1 does just this. We have

considered all of the other possible rotations given in

Goodman, and ®nd no other symmetries. We only need two of

these symmetries to generate the group G, and we take S and

SxI to be the group generators.

We now turn our attention to the graphical analysis to

determine whether disordered ground states are possible and,

if so, for what minimum r. We need to discover whether these

new symmetries can induce D pairs in the symmetry-reduced

graphs
S
2G

2
r or

SxI
2G

2
r . These graphs differ from the CdI2 case

because CdI2 and GaSe do not share the same symmetries. So

we are forced to consider the graphs again in detail. While the



novel symmetries of GaSe may seem strange and not as

intuitive as the previous ones, all the same criteria for ®nding

D pairs hold, and the construction of the symmetry-reduced

graphs proceeds in a similar fashion. We construct the graphs

2G
2
r ,

S
2G

2
r ,

SxI
2G

2
r and

SxI�S
2G

2
r . This is most easily accomplished

using the recursive procedure described by Canright &

Watson (1996). To search for disordered ground states at a

given r, we seek candidate D pairs in
S
2G

2
r or

SxI
2G

2
r . We then

require that these D pairs remain simple cycles of the full

symmetry-reduced graph
SxI�S

2G
2
r . Otherwise, they are said to

decompose [see Canright & Watson (1996) for a discussion of

this term]. We ®nd no candidate SD pairs in
S
2G

2
r for any r

because there are no spin-invariant nodes (since k � 2). Thus

we focus on candidate SxID pairs in
SxI

2G
2
r . Here we do ®nd

candidate D pairs for many r values and must use some care to

test if they decompose or not. For r � 1, we ®nd candidate D

pairs of type 2(a) in
SxI

2G
2
1 but none survive as simple cycles

after the imposition of S symmetry. For r � 2, there are no SxI-

symmetric nodes (indeed there are none for any even r) and

therefore no possibility of type 2(a) D pairs. Also, there are no

joining arcs (JAs) (see Canwright & Watson, 1996) in 2G2
2, and

hence it is not possible to ®nd type 2(b) or type 4 D pairs. For

r � 3, there are no joining arcs in 2G2
3, thus no type 2(b) or

type 4 D pairs. Also, while 2G2
3 does have SxI symmetric nodes,

none of these support type 2(a) D pairs. At r � 4 and 5, we

®nd the following. There are no type 2(a) D pairs (from

inspection of the SxI-symmetric nodes at r � 5). However,

both 2G2
4 and 2G2

5 have joining arcs. Hence we do ®nd candi-

date type 2(b) and type 4 D pairs at r � 4 and 5.

Here we ®nd it useful to note that there are no JAs in S
2G2

r

for any r � 5. Given the absence of JAs in S
2G2

r , we can prove

that all type 2(b) and type 4 D pairs in
SxI
2 G

2
r decompose under

the application of S symmetry ± except for the possible

existence of rare cases where a candidate type 4 D pair in
SxI

2G
2
r maps to one SC in

SxI�S
2G

2
r . We have, however, by careful

inspection of the graphs, found no such instances for r � 5. It

is only at r � 6 that we ®nd JAs in S
2G

2
r , and hence D pairs in

SxI
2G

2

6 that are also simple cycles of
SxI�S

2G
2

6. We therefore

conclude that the range of the interaction must extend at least

as far as six spin components (three MLs) for there to be a

possibility of disordered ground states. In our previous

language, we say that GaSe is PNC for r � 6 (R � 3).

7. Micas

Polytypism in micas has been studied for some decades

(Pauling, 1930; Takeda, 1971; Mogami et al., 1978; Thompson,

1981). The modular layers of micas can occur in a variety of

forms. Here we shall mostly focus on `ideal' micas, as de®ned

in Thompson (1981). This ideal modular-layer structure

consists of an octahedral layer (OL), sandwiched between two

tetrahedral layers (TLs). The resulting LG is C1 2=m 1.

Thompson also de®nes a pair of orthogonal translation

vectors, s and t, for the ideal mica ML, which we will make use

of. The LG de®nes a preferred axis in the xy plane by the

twofold axis, which also lies along the mirror axis (i.e. normal

to the mirror plane); Thompson's t translation lies along this

axis. The s axis is then also uniquely de®ned by the ML; and we

follow Thompson in de®ning a `stacking vector' (SV), which

lies parallel to s. The SV is a true vector, i.e. �SV� 6� ÿ�SV�,
owing to the low symmetry of the mica ML. It is then natural

to take the absolute spin of a ML to be its SV. The SV is

de®ned entirely by the OL; in the ideal ML, the TLs are slaved

to the OL and so contribute no information to the spin of the

ML. The SV is a geometric vector in the real-space xy plane.

However, we will not need to resort to vector spins in order to

analyze the case of mica. Each ML i is fully speci®ed by its SV

si. Furthermore, given one ML ± for instance, our RML ±

stacking constraints require that any other ML in a stacking

sequence must have its SV lying in one of six positions, equally

spaced on a unit circle. Hence the absolute spins take one of

six possible values. Relative spins may then be de®ned by

�i � si ÿ siÿ1. For micas (unlike the previous cases studied

here), �i can be zero, i.e. two subsequent MLs can have the

same SV. In fact, there are no constraints on the �i, once we

have locked the absolute spins into one of six positions. Hence

the relative spins �i freely take one of six values, and k � 6.

Furthermore, a single spin component (per ML) suf®ces to

specify a stacking sequence; hence D � 1. We shall simply

treat the si and �i as scalars taking one of six values.

With relative spins so de®ned, we can ®nd the symmetry

group G of H1D. We take x and y axes in space to lie along the s

and t axes, respectively, of a RML. The absolute spins then lie

on one of six points on a circle, as shown in Fig. 3(a); here the x

axis is horizontal. The same ®gure can also be taken to depict

the relative spin states, with the common conventions that the

�x axis represents zero rotation and positive rotations are

taken counterclockwise. Now we apply y inversion, i.e.

my � �y() ÿ y�, to a seed sequence of absolute spins si. It is

clear from Fig. 3(a) that mysi � 6ÿ si � ÿsi �mod 6�. Hence

my�i � ÿ�i �mod 6� and so S symmetry is a good symmetry of

H1D.

In ®nding this result, we have however run into a case not

considered by CW. That is, they assumed that even-k systems

must have no S-invariant spin states. Such a case is pictured in

Fig. 3(b). This case is also possible but does not pertain to

micas. Hence we digress brie¯y to attempt to summarize the

cases that do seem possible, given the notion of spins as

rotations lying on a unit circle. We will continue to assume (as

did CW) that the S operation changes the sign of a rotation.

For any k, we will also assume that the k states are distributed

such that the non-S-invariant states map to one another

pairwise, i.e. in pairs having the same x coordinate in a ®gure

such as Fig. 3. Under these assumptions, we ®nd that there can

be only zero, one or two S-invariant states. This gives three

cases.

Case 1: k odd. There must be precisely one S-invariant state.

Case 2: k even, no S-invariant states (Fig. 3b).

Case 3: k even, two S-invariant states (Fig. 3a).

CW considered only cases 1 and 2. Mica falls under case 3

and so we will not be able to use the results of CW's Table I,

even though D � 1.

We note here in passing that every polytype family but SiC

that we have considered has led us to study possibilities not
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considered by CW. In fact, the kinds of spin structures and

symmetries that we have found would have been hard to

anticipate. Hence we feel that we must append a certain

tentativeness to any sort of `exhaustive list' of possibilities ±

such as the three cases above. They are the only possibilities,

given our assumptions about spins and the spin-inversion

operation. However, we will soon ®nd (with kaolins) that even

the notion of spins as rotations is too narrow. And we will not

claim that our other assumptions must hold for all polytype

families.

Now we can ®nish our derivation of the symmetry group G.

We ®nd that uniform ẑ rotations are useless (i.e. the identity),

since the relative spins are relative rotations themselves.

It is then suf®cient (still neglecting glides and screws) to

consider re¯ections. The re¯ection mx has the property

mxsi � 3ÿ si �mod 6�, and hence also gives S symmetry. The

re¯ection mz has the effect of inverting each SV in its plane,

plus of course reversing the stacking order. We may write

these combined effects as mzsi � 3� sÿi �mod 6�. This gives in

turn mz�i � �ÿi; that is, mz tells us that H1D has I symmetry.

There are no further independent useful rotations; so we have

G � S� I.

Now we seek rmin: where are there D pairs for mica? We

have not performed a very detailed study of case 3 for various

k and r. For one thing, case 3 for k � 2 makes the identity out

of the S operation; hence it is of no interest. Looking at k � 4,

we ®nd D pairs already at r � 1 for case 3 with S� I

symmetry. These D pairs are also found at k � 6, since the

k � 4 graph is a subgraph of the k � 6 graph. Hence we ®nd

that rmin � 1, k � 4 (case 3, even k). And so ideal micas may

have noncrystalline ground states for any range of interlayer

interaction.

Finally, we brie¯y consider nonideal mica structures. One of

the commonest deviations from the ideal structure is a rota-

tion of the tetrahedra in the tetrahedral layers (TLs)

(Thompson, 1981). This however does not typically change the

symmetry (i.e. LG) of the ML ± since the ideal TLs have a

sixfold rotational symmetry, while the OL has no rotational

symmetry about ẑ. Hence the above results apply equally well

to nonideal micas, when the departure from ideality takes this

form.

Another departure from the ideal picture can occur when

micas with rotated TLs exhibit a preference for certain �
values over others. Preferences can of course be re¯ected in

energetics (J's). However, if the `preference' is so strong as to

exclude certain possibilities, then we can incorporate it into

our formalism. For example, Thompson (1981) states that, in

micas with rotated TLs, `cross operators' (our �i � 1; 3 or 5)

are not found. In such a case, our k � 6 problem simply

becomes k � 3, and hence case 1. For this case, we know from

CW that rmin � 1. Thus our conclusion remains unchanged

from the ideal mica case: for any range of interaction, one

cannot rule out disordered and degenerate ground states.

8. Kaolins///cronstedtites

In this section, we consider a family of phyllosilicates of lower

symmetry than micas. This family is termed `kaolinites' in, for

example, McLarnan (1981). The MLs consist of an octahedral

layer (OL) plus a single tetrahedral silica layer (TL). The MLs

are dioctahedral, i.e. only 2=3 of the cation sites in the OL are

occupied, but in an ordered fashion as expressed in the LG.

These minerals are sometimes also called the `kaolinite group',

the `kaolins' or `kandites' (Deer et al., 1962). Since `kaolinite'

is also used (Brindley, 1946) to refer to a speci®c crystalline

polytype of this family (the commonest one), to avoid

confusion we will call the family `kaolins' and reserve the term

kaolinite for the speci®c structure.

Other than this one question of terminology, we will follow

McLarnan (1981) in notation and conventions. McLarnan's

article is particularly useful to us because there are strong

similarities between the (crystalline) polytype-counting

problem studied there (see also Takeda, 1971) and the

problem we address here of ®nding the symmetry group G of

H1D. These similarities come from the fact that, in each case,

one is interested in studying allowed sequences of spins and

also in determining which distinct allowed strings of spins are

related by an overall (proper or improper) rotation of the

Figure 3
(a) Locus of absolute (or relative) spins for mica, with k � 6 possible
states. One can think of the relative spins as rotations; then spin inversion
S simply reverses the rotation ± which re¯ects points about the horizontal
axis. For micas, there are two spin states that are invariant under S. We
call this case 3. (b) A possible k � 6 case, with S de®ned as in (a), in which
there are no S-invariant states. We call this case 2.



sample. Hence we ®nd that McLarnan has performed much of

our work for us.

The LG of kaolin MLs is C1m1. The twofold axis is lost

(compared to mica) owing to the loss of one of the TLs of the

sandwich; but the mirror (de®ned by the missing cation of the

dioctahedral layer) remains, at least in ideal kaolins. We shall

(as we did with micas) discuss departures from ideality later in

this section. This mirror symmetry again allows one to de®ne a

preferred axis in the ML. This axis was termed a `stacking

vector' for micas; here we follow McLarnan and call it �.

Speci®cally, we de®ne �i to be the displacement from TLi to

OLi, where the origin of any TL is the center of a hexagon, the

origin of an OL is the vacant cation site, and we take the OL to

be above the TL in a ML. �i is thus a relative spin, since it is

measured from an adjacent sublayer rather than from any

absolute origin. It is also an intralayer spin. The �i can take

one of six values, which can be represented as six equal-length

vectors differing by 60� rotations (McLarnan, 1981; Zvyagin,

1962; Zvyagin & Drits, 1996) (Fig. 4a). Their components are

commonly measured in a basis �a; b� de®ned by a rectangular

unit cell of the RML, with b � 31=2a.

We need an interlayer spin to place the next ML. We take �i

to be the displacement from TLiÿ1 to TLi. The allowed �i

vectors are shown in Fig. 4(b). We have thus two spin

components needed per ML to specify any kaolin stacking

sequence, so that D � 2. However, we also have k� � 6 while

k� � 9 6� k� , i.e. the two k values are different.

Furthermore, unlike any family studied above, we ®nd with

kaolins that there are `extra' stacking rules beyond those

implicit in the de®nition of spins. The energetically acceptable

stackings bring the lowest oxygen (O) sheet of the TL of

MLi�1 in registry with the uppermost hydroxyl (OH) sheet of

the OL of the ith ML, such that there are short hydrogen

bonds between the O and the OH sites. Such a registry

depends on the values �i and �i�1. It turns out that not every

combination �i�i�1 gives a favorable registry. With our

conventions (which differ from McLarnan's by a minus sign),

the extra stacking rule states that, if � has a subscript, then that

subscript must differ from that of the previous � in the

sequence by an odd integer. This constraint rules out 18

possible �i�i�1 pairs, leaving the well known (McLarnan, 1981;

Zvyagin, 1962; Newnham, 1961) 36 possible �� pairs. Thus,

K 6� k� � k� .
So far we have not mentioned absolute spins. The reason is

that, since the relative spins are simply translations, the

absolute spins are the same; the two sets of spins are simply

related by sum and difference operations. Hence rotations R

act upon each in precisely the same way. So in ®nding the

symmetry group G we shall omit the (usually helpful) step of

tracking the fate of absolute spins, and simply let our rotations

act directly on the relative spins.

We seek as usual useful rotations which will determine G.

We ®rst rule out (as with SiC) the lower part of Goodman's

table by noting that there is no �z() ÿ z� operation in the

LG of kaolins. That is, the kaolin MLs are polar. Hence, I will

not appear in G. As noted by McLarnan, the remaining useful

operations are re¯ections (about a and b) and rotations (in

multiples of 60�). McLarnan gives the effects of these opera-

tions on the spins. For our purposes, we simply note that each

gives a new but allowed spin sequence and hence de®nes a

symmetry of H1D. Reserving capital letters for the latter

operators, we denote the symmetry of H1D generated by the 6z

rotation as C (cyclic), and those generated by the mirrors ma

and mb as Ma and Mb. We note that the latter two operators

cannot both be generators of G however, since (e.g)

Mb � C3Ma. In fact, since our spin components are geometric

objects (vectors) in a plane, the group G is isomorphic to a

plane point group. We can take the generators to be 6z � C

and one mirror M, and the resulting group is the point group

G � C �M � 6mm.

Having found G, we are in principle ready to look for D

pairs and rmin. However (as usual), we have some new features

with this new problem that require some attention ®rst. The

group G is bigger (of order 12) than any we have faced before;

and it is non-abelian. Furthermore, even at r � 1 the graph for

kaolins is very large; and generating this large graph requires

systematically omitting forbidden arcs corresponding to the

forbidden sequences in the `extra' stacking rules. Let us

examine how these new aspects affect our approach.

Every element of G is a symmetry of H1D. Thus candidate D

pairs may in principle be found in each graph
g
2G for every

g 2 G, g 6� e (where e is the identity). Candidate D pairs must

then be tested to see if they decompose under the application

of all the other symmetries in G. That is, one must generate the

maximally symmetry-reduced graph GG whose nodes and arcs
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The relative spins for kaolins. Each component (intra- and interlayer) is a
translation vector in the ab plane. In these ®gures, a is horizontal and b is
vertical. (a) The � (intralayer) vectors for kaolins. (b) The s vectors. The
s0 vector is (0, 0).
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are invariant under every element of G. Surviving D pairs

among the candidates are then those that appear as simple

cycles in GG. All of this logic of course holds for every case we

have studied, as well as for the work of CW (Canright &

Watson, 1996; Yi & Canright, 1996). However, it is the size and

complexity of G that motivates us now to make such logic as

precise and explicit as possible.

The fact that our current G is non-abelian turns out not to

require major changes in our approach. The reason is that the

deciding criteria are found in the graph GG. The nodesN� and

arcs A� of this graph are invariant under all elements g 2 G.
Thus, for all g; h 2 G, gh � N � � hg � N � (and similarly for the

arcs). In a sense the graph GG corresponds to the identity

representation of G, for which it is irrelevant that full repre-

sentations of G are non-abelian. (Of course, in any speci®c

algebraic manipulation, one must take care of the fact that

gh 6� hg in general.)

It follows from the above that, given a big G, it is much

easier to show that D pairs exist for a given r than to show that

they do not. The former requires ®nding a single example,

while the latter requires the examination (by proof or by

exhaustion) of all possible symmetry elements g, and all

candidate D pairs that they generate.

We are fortunate here in that we can easily ®nd surviving D

pairs at the level r � 1 for kaolins. Hence we have no need to

show that there are none for any r because we ®nd that

rmin � 1. Hence we have no need to generate (by hand or

computer) any complete graph GG, thus avoiding the problem

of the large size of the graphs for this problem. To ®nd a

surviving D pair, we simply need to take a candidate D pair,

which is a small piece of gG for some g, and verify that it

remains a simple cycle of GG. To accomplish the latter, it

suf®ces to apply the group generators to the candidate cycles a

suf®cient number of times (once for M since M2 � e, and ®ve

times or fewer for C since C6 � e) until all nodes and arcs are

invariant under further applications of these generators.

Our example for r � 1 is trivially simple. We take the cycle

�0�5 and its Ma inverse �0�2. These are an Ma D pair. Repeated

application of our generators gives the single simple cycle

�0� of GG, where the symbol � here represents the single

G-invariant node in GG representing all the �l states of the

unreduced graph. Hence this D pair does not decompose; and

there are many others. We can also easily ®nd many D pairs at

larger r, and so are con®dent that our conjecture concerning D

pairs at all r> rmin is true for this problem.

We thus ®nd that ideal kaolins are PNC with rmin � 1. What

about distortions from the ideal ML structure? We consider

two forms of distortion: (a) distortions that preserve the LG

symetry; (b) those that do not.

(a) Our reasoning here is similar to that for micas. That is,

distortions that preserve the LG symmetry but are not so large

as to change the stacking rules have no effect on our analysis

or conclusions.

(b) We are prompted to consider this case by experimental

observations (Artioli et al., 1995; Bookin et al., 1989) that such

distortions are measurable in kaolin samples. In particular, the

speci®c kaolinite structure ± which is a repeated �� pair ± is

chiral (right- or left-handed) (Newnham, 1961; Bailey, 1963).

It is observed (Artioli et al., 1995; Bookin et al., 1989) that this

handedness gives rise to chiral distortions of the MLs. Such

distortions of course do not preserve the mirror symmetry of

the ideal kaolin (C1m1) ML. They are instead an example of

the phenomenon [noted also in Zvyagin & Drits (1996)] that

ML distortions are due not only to the interactions of

subcomponents of a ML but also to the further environment,

i.e. to the stacking sequence. This idea ± which of course must

be true in principle ± is further supported by the experimental

observation (Bookin et al., 1989) that MLs in dickite are not

chiral. Dickite is a period-4 (in units of spin components)

kaolin crystal whose stacking sequence is nonchiral

(Newnham, 1961).

At ®rst glance, one might conclude that this kind of

distortion simply cannot be dealt with by our formalism. After

all, such distortions essentially rede®ne the spins in a way that

is dependent upon stacking sequence. This seems like a

hopeless complication.

We offer a tentative way of thinking about these distortions.

The stacking sequence prescribes how one should stack ideal

MLs (where here `ideal' means `retaining the LG symme-

tries'). H1D is then a recipe that tells (in principle) what exact

energy results from such a stacking, including any distortions

that relax the ML structures away from the ideal. That is, we

suggest that stacking-dependent distortions do not rede®ne

the spins in any useful way, and that their effects can be

incorporated in the J's for H1D. This approach should be

practical as long as the distortions are not so large as to alter

the identity of the MLs ± that is, as long as the model of the

material as polytypic remains valid. It is in the same spirit as

the idea (Cheng et al., 1988; Engel, 1990) that the J's can be

thought of as functions of temperature (thus incorporating the

effects of phonons etc.), in which case H1D becomes a free

energy. The approach still makes sense as long as the ener-

getics justify the polytype picture ± which reduces the

con®guration space of the constituent atoms to that small

`slice' de®ned by the ML de®nitions and the stacking rules.

Thus we suggest that sequence-dependent distortions can be

handled by incorporation into the couplings in H1D ± although

we also feel that the question deserves further thought.

Finally, we consider the trioctahedral analogs of kaolins.

These are called `cronstedtites' by McLarnan and `serpen-

tines' by other sources (Brindley, 1980; Bailey, 1988), who

reserve the term cronstedtite for a speci®c compound (but not

structure!) in this group. That is, the term `cronstedtite' refers

to a whole set of polytypic structures of the same chemical

composition. Hence we will use the term here as McLarnan

does, to refer more generally to 1:1 (i.e. ML � TL�OL)

trioctahedral polytypes.

The analysis of cronstedtites is simple, once the kaolins are

understood. The trioctahedral occupation adds a threefold

symmetry to the MLs and renders the LG p31m. The effect

(McLarnan, 1981) on our analysis is that the � variables now

must obey �0 � �2 � �4 and �1 � �3 � �5, owing to the

threefold symmetry. Hence we retain only �0 and �1. The

allowed �'s remain unchanged. Hence we have k� � 2 while



k� � 9; and the same extra stacking rule applies, such that

K � 12. Because the � spin components retain the same

complex structure as for the kaolins, the group G is the same

for cronstedtites as for kaolins, i.e. G � C �M � 6mm.

We also ®nd rmin � 1 for the cronstedtites. In fact, we can

simply take the example r � 1 D pair from our kaolin

discussion and appropriately relabel the �'s. The result is still a

pair of cycles related by Ma, which are represented by one

simple cycle �0� in GG as before.

9. Summary and discussion

The crystal problem in one dimension has been addressed

in various forms, with various results. The present work

continues a thread of investigation involving (i) discrete

con®gurations (`k-state spins') on a one-dimensional lattice,

with (ii) ®nite-ranged interactions (of range r). Radin &

Schulman (1983) and Teubner (1990) showed that the

`generic' problem of this class has a periodic ground state

with vanishing entropy per spin, i.e. is crystalline. Canright &

Watson (1996) (CW) then added symmetry to the problem,

and showed that, in general, one no longer knows that even

the `generic' (but symmetric) problem has a crystalline ground

state. More speci®cally, all problems in this class (one-

dimensional, ®nite k, ®nite r) have a ®nite number of inde-

pendent couplings in the Hamiltonian H1D. Hence a speci®c

Hamiltonian is a point in a ®nite-dimensional space. Radin &

Schulman and Teubner showed that the set of points with

nonperiodic ground states is of vanishing volume in the larger

space of nonsymmetric Hamiltonians. CW showed that this

same (nonperiodic) set is (for many values of k and r, and for

many symmetries) of ®nite volume in the lower-dimensional

subspace of symmetric Hamiltonians. Thus, in such a case

(termed `PNC' for `possibly noncrystalline' here), if one has a

symmetric Hamiltonian H1D and chooses the couplings J by

throwing a dart into the symmetric space, one has a ®nite

probability of obtaining a set of J's that has an uncountable

number of disordered ground states.

Nature presumably does not throw darts; but we are still

rather ignorant about how in fact nature almost invariably

(Parsonage & Staveley, 1978) ®nds crystalline ground states

for bulk matter. In this work, we have extended the ®nite-k; r

thread considerably closer to real polytypes. It is known that

such materials are well represented ± especially at low

temperature ± as one-dimensional stacking problems falling

into the class considered here. Here we have chosen a variety

of polytype families, deduced the nature of the spins and the

symmetry of the stacking Hamiltonian H1D, and then asked

and answered the following question: does each family have a

®nite (PNC) or vanishing (C for `crystalline') subvolume of

couplings giving disordered ground states?

We assume no knowledge about the couplings themselves,

other than that they fall somewhere in the symmetric

subspace. Thus, if nature has reasons to prefer crystalline

ground states ± reasons that are not embodied in our

assumptions here ± then she will perhaps not throw darts, but

rather carefully aim such that real polytypes always land in a C

subvolume. We believe that we (following CW) have incor-

porated an important physical ingredient into our reasoning

by including symmetry. But we recognize that there may be

other ingredients, possibly arising from the quantum-

mechanical origin of the effective classical couplings, which

may be equally important, but are left out here. We have

simply used those ingredients that are well known: the nature

and symmetry of the layers, plus the stacking rules. With these

ingredients, we have deduced the symmetry group G of H1D

and then stated whether the polytype family is PNC or C.

Our results are a signi®cant extension of the above-

mentioned thread, and in particular of the work of CW, in two

ways. For one, we have applied the general reasoning of CW to

real materials, and found the interesting result that most of the

families studied ± in fact, all families but the SiC family ± are

PNC, i.e. cannot be assumed to be crystalline at T � 0.

Secondly, we have discovered, and documented in this paper,

that real materials exhibit a rich variety of kinds of spin,

stacking rule, and symmetry group. Again excepting SiC, we

have been required to study new spin types and/or new

symmetries for each family studied.

This richness and the potential for noncrystalline ground

states are summarized in Table 1. As discussed in the body of

the paper, there is a minimum interaction range rmin at and

beyond which a family becomes PNC. (For a C family,

rmin � 1.) We have included rmin in Table 1; and in the cases

where rmin refers to interaction range in units of a fraction of a

modular layer (because more than one spin component is

required per ML, i.e. D> 1), we have also expressed this

minimum interaction range in units of full MLs as Rmin.

Besides these numbers, we have summarized a variety of

information for each family in Table 1.

It is worthwhile repeating and clarifying what the answer

PNC does and does not tell us. There is a `P' in front because

there is no problem in this class for which the ground state is

disordered and degenerate for all values of the couplings.

Hence our approach can never give a de®nite `noncrystalline'

answer. For that one must actually compute ± or at least

estimate ± the true couplings, including their range, for a given

material. However, our approach can do more than simply say

`possibly noncrystalline': it can also specify the precise range

of J's giving noncrystalline ground states (Watson et al., 1997).

Hence, even a rough estimate of the couplings may suf®ce to

determine the nature of the ground state for a given material.

We know of two cases for which the J's have been computed

from ®rst principles, namely, SiC (Cheng et al., 1987, 1988;

Heine, 1987; Shaw & Heine, 1990) and ZnS (Engel & Needs,

1990; Engel, 1990). Unfortunately, for each of these materials

we predict nothing novel. They are in the same family and we

®nd that this family has crystalline ground states for all values

and ranges of the couplings.

Let us now try to assess how much promise there is, in the

results of Table 1, of novel behavior (i.e. disorder at equili-

brium at T � 0) in real materials. Certainly the PNC entries

are numerous. And the Rmin values are not large. We may

compare these with those found for SiC and for ZnS: the

interactions for these materials extend to roughly three MLs
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and one ML, respectively. We have not computed the fraction

of the coupling-parameter volume giving noncrystallinity; we

have only shown that it is nonzero. This fraction could be

obtained using the methods of Watson et al. (1997); however it

is a tedious job and we are not sure the answer would be

illuminating. We take the results of this study, as summarized

in Table 1 with its many PNC entries, as saying that one cannot

in general assume that the equilibrium low-temperature phase

of a given polytype is crystalline. Instead one must look

further; and the most promising approach is probably to

compute or estimate the effective interlayer couplings for each

speci®c polytype of interest.

We note that one does not obtain a clear picture from

experimental observations either. Disorder is ubiquitous

among real polytpes. And real polytypes suffer from the

undoubted problem that most of the observed structures are

metastable. We know this because there are so many observed

structures for a single p and T ± even for the cases such as SiC

and ZnS, where we know the equilibrium structure is ordered

± and because the activation energies for translating some-

thing as large as a modular layer are large. Hence we get no

clear information about the equilibrium behavior of real

polytypes from the observation that disordered structures are

widespread.

We return, for the ®nal time, to our own logic. Our

reasoning is based on strong conditions such as the symmetry

of MLs, stacking constraints, and the topology of cycles in

graphs and their known relation to ground states of the one-

dimensional Hamiltonian. Hence this reasoning is in most

cases rigorous. However, it is not more reliable than its

assumptions, which we will examine critically here. First, the

symmetry. We take the ML symmetries to be exact. In some

cases (micas and kaolins) we have discussed departures from

the `ideal' ML structure. Clearly such departures do not affect

our reasoning or our results if the distortions from the ideal

structure maintain the symmetry of the ML, i.e. if they do not

change the layer group or the stacking rules. In the section on

kaolins, we addressed a further possibility, namely distortions

that do lower the ML symmetry. These in fact can (and do for

kaolins) depend on the stacking sequence itself. This possi-

bility ± which is always present in principle ± is clearly

observed in kaolin polytypes; distortion is probably

pronounced for these materials

because the hydrogen-bonding

constraints are in fact dif®cult to

satisfy. In any case, we have argued

that such distortions also need not

alter our logic or conclusions because

they can be absorbed into the ener-

getics of the couplings. We consider

this argument to be only tentative. But

regardless of the merit of this argu-

ment, our main line of reasoning

should be `nearly correct' if any

distortions of the MLs are small. Here

`nearly correct' means that the distor-

tions give rise at most to small changes

in the energetics of the material, such that it behaves as

predicted by our logic except for small corrections due to

small energy terms. If these corrections change the nature of

the ground state from noncrystalline to crystalline (or vice

versa), then the material will behave as if the corrections are

zero until the temperature becomes of the same order as the

small corrections ± at which point metastability effects are

likely to be very strong. [An example of this for a non-poly-

typic solid is water (Tajima et al., 1982, 1984)].

The same comments apply to our other strict assumption,

that the interlayer interactions are zero beyond some range r.

They are of course not exactly zero for any r; and, as discussed

in CW, tiny terms at some larger range can make the domain-

wall energy of a D pair nonzero instead of exactly zero. In such

a case, a material will behave as if its domain-wall enegy is

zero down to some small temperature; and then (again) it must

overcome activation barriers at low T in order to ®nd the true

crystalline ground state among the huge number of disordered

structures speci®ed by the D pair.

The present work (summarized in Table 1) shows how

elementary symmetry considerations, plus some study of

certain classes of directed graphs, can give interesting and

nontrivial information about possible ground states of real

polytypes. Our results say that the polytype families repre-

sented by CdI2, GaSe, micas and kaolins/cronstedtites should

not be assumed to have crystalline ground states ± at least not

without suf®cient information about the nature of the inter-

layer couplings. Since the PNC entries are numerous, our

results suggest the same conclusion for any polytype family of

interest. We hope that these results inspire some new interest

in and curiosity about the crystal problem ± speci®cally, the

crystal problem for the large number of solid materials that

exhibit polytypism.

We thank Greg Watson for inspiration and numerous ideas.

This work was supported by the NSF under grant No. DMR-

9820816.
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